
Lake Level Monitoring

Final Report for CS39440 Major Project

Author: Tim Stableford (tis4@aber.ac.uk)
Supervisor: Dr. Colin Suaze (cos@aber.ac.uk)

25th April 2015

Version 2.0 (Final)

This report is submitted as partial fulfilment of a BSc degree in
Computer Science (G401)

Department of Computer Science
Aberystwyth University
Aberystwyth
Ceredigion
SY23 3DB
Wales, UK

Lake Level Monitoring Tim Stableford (tis4)

Declaration of originality

In signing below, I confirm that:

• This submission is my own work, except where clearly indicated.

• I understand that there are severe penalties for plagiarism and other
unfair practice, which can lead to loss of marks or even the
withholding of a degree.

• I have read the sections on unfair practice in the Students’
Examinations Handbook and the relevant sections of the current
Student Handbook of the Department of Computer Science.

• I understand and agree to abide by the University’s regulations
governing these issues.

Signature ……………………………………………. Tim Stableford

Date …………………………………………………

Consent to share this work

In signing below, I hereby agree to this dissertation being made available to
other students and academic staff of the Aberystwyth Computer Science
Department.

Signature ……………………………………………. Tim Stableford

Date …………………………………………………

Ethics research application number: 1103

Page 2 of 47

Lake Level Monitoring Tim Stableford (tis4)

Abstract

Remotely monitoring of sensors is an old problem with many solutions, but
integrating this into the IoT is a new problem. There is a building management
system called EMonCMS which aims to aggregate data from many types of
sensors and display them all in a web interface. The aim of this project is to
create a low power network which can interface with EMonCMS through a
gateway. The low power network should be able to run from low power
sources such as solar power. It should be a generic system capable of relaying
various types of sensor. The end output of this project is to implement an
example sensor on this system which monitors the water level of the lake
which supplies water for the Centre for Alternative Technology Wales.

Page 3 of 47

Lake Level Monitoring Tim Stableford (tis4)

Contents

1.BACKGROUND, ANALYSIS & PROCESS..6
1.1.BACKGROUND..6
1.2.ANALYSIS..6

1.2.1.Document Analysis...6
1.2.2.Feature List...8
1.2.3.Initial Choices..9
1.2.4.Objectives..10

1.3.PROCESS...10
1.3.1.Roles..11
1.3.2.Overall Model..11
1.3.3.Feature List...12
1.3.4.Plan By Feature...12
1.3.5.Per Feature Activities..12

Design By Feature...12
Build By Feature...13

2.DESIGN..14
2.1.OVERALL ARCHITECTURE...14
2.2.DETAILED SOFTWARE DESIGN...15

2.2.1.Sensor Board...15
2.2.2.Radio Board...16
2.2.3.Configuration Software..19

2.3.TOOLS USED...20

3.IMPLEMENTATION...21
3.1.ITERATION 1...21
3.2.ITERATION 2...22
3.3.ITERATION 3...23
3.4.ITERATION 4...28
3.5.REVIEW..29

4.TESTING..31
4.1.OVERALL APPROACH TO TESTING..31
4.2.UNIT TESTS...31
4.3.FUNCTIONAL TESTING..31

4.3.1.Sensor Board...31
4.3.2.Configuration Mode..32
4.3.3.Communications...33
4.3.4.Sleep...34

4.4.ACCEPTANCE TESTING..34

5.CRITICAL EVALUATION...35
5.1.PROCESS...35
5.2.REQUIREMENTS & AIMS RETROSPECTIVE...35
5.3.TOOLS..36
5.4.DESIGN DECISIONS..36
5.5.CUSTOMER ACCEPTANCE...37
5.6.CONCLUSIONS..37

6.APPENDICES...38
6.1.DOCUMENTS FROM CAT..38

6.1.1.E-Mails...38
Depth units (from Adam Tyler)..38
Problem with maximum node ID being 32 (from Adam Tyler)..38
System overview (from Adam Tyler)...38

Page 4 of 47

Lake Level Monitoring Tim Stableford (tis4)

6.1.2.Other Documents..39
6.2.EEPROM MAP...39

6.2.1.EEPROM Reset (Address 0)...39
6.2.2.RF24 Node ID (Address 1)...39
6.2.3.EMon Node ID (Address 2 [2])..39
6.2.4.EMon Calibration Gradient (Address 4[4])..40
6.2.5.EMon Calibration Y-Intercept (Address 8[4])...40
6.2.6.EMon Calibration Base (Address 12[2])...40
6.2.7.Encrypt Enable (Address 14)..40
6.2.8.Encryption Key (Address 15 [24])...40
6.2.9.Alarm Storage (Address 40 [Variable, minimum 2])..............................40
6.2.10.Attribute Registered (Address 400[Variable, currently 2])..................40

6.3.CIRCUIT DIAGRAMS..40
6.3.1.Radio Board...41
6.3.2.Sensor Board...41

6.4.PARTS LIST...42
6.4.1.Radio Board...42
6.4.2.Sensor Board...42
6.4.3.Raspberry Pi Interface..42
6.4.4.Total Cost..43

CODE SAMPLES..44

7.ANNOTATED BIBLIOGRAPHY..45

Page 5 of 47

Lake Level Monitoring Tim Stableford (tis4)

1. Background, Analysis & Process

1.1. Background

CAT (Centre for Alternative Technology Wales) is a company whose
purpose is to educate and consult on sustainable solutions[3]. These include
renewable power sources, recycling and energy monitoring. In conjunction
with SAW (Software Alliance Wales) and Aberystwyth University multiple
projects have been handed out for dissertation students. These projects focus
on expanding the energy monitoring and management system. There are two
projects which focus on expanding the sensor network. This is going to be
accomplished by creating a low-power radio network and an interface
between this system and EMonCMS. Creating the low-power network and an
example sensor is the goal of this project.

This system provides an interesting mix of hardware and low level
software development. It also builds upon existing work to produce a useful
product which will actually be used at CAT's site for monitoring the level of
water in the lake that provides the water supply for the site.

The type of project is an engineering project, this means that most of the
research was researching hardware, libraries and similar projects which may
have been undertaken. From a hardware choice perspective the goal was to
maximize battery life and minimize cost without sacrificing functionality.
From a software perspective the goal is to create a generic product compatible
with any type of sensor and to make it fit on the micro-controller chosen.

Most of the previous work done by others has been creating low-power
networks based upon many different chip-sets and many levels of abstraction
on top, ranging from simple message sending without received
acknowledgement to mesh networking with automatic re-transmission. There
has also been lots of work done into minimizing power usage of the various
components that were chosen for this project. Part of the hardware research
was selecting which of these will be best suited to a low-power environment
based upon others findings on actual power usage. It was also necessary to
research some protocols such as Modbus to correctly interface with the
pressure sensor supplied by the university.

1.2. Analysis

1.2.1. Document Analysis
The requirements for the project have been supplied in the form of stories as is
often the case in Agile development. These stories supplied by CAT are as
follows:

• I want something that can read the lake level.

• I want something that can send the lake level data back to the server in
the specified format at a pre-defined interval.

• I want something that uses low-power radio to communicate with the
server via a gateway.

• I want something developed on the Arduino platform.

• I want something that works off non-mains power.

Page 6 of 47

Lake Level Monitoring Tim Stableford (tis4)

• I want a self-contained communications stack/library included to allow
encrypted communications from the specified inputs in the specified
format.

The first requirement involves interfacing with the pressure sensor
supplied by the university (PTM/N/RS485). This sensor communicates over
half-duplex RS485[1] using the Modbus[2] protocol. This sensor requires
converting the raw pressure reading to pressure in kPa which is the format
required by CAT. To do this the sensor will have to be calibrated in water and
then the base pressure level calibrated at the site to account for changes in air
pressure from sea-level to the higher elevation at the CAT site.

The second requirement, to send the data back in the specified format
at a pre-defined interval is mostly a loose requirement in this case because
translation to the format they require is done by the gateway, implemented in
another project. The specified format does however apply to the units that the
lake level is measured in, in this case kPa as specified by CAT in an e-mail.
Communications will be implemented in a format defined at the beginning of
the project by myself and the developer of the gateway [4]. Pre-defined interval
is elaborated on in the OEMan Communications Specification[5]. There are
actually two types of nodes1 that CAT want to be able to support, dumb nodes
and smart nodes. Dumb nodes just post a value at set times, smart nodes are
able to have requests made on them. Accomplishing posting data at a set time
can have various different behaviours from the very simplistic to the more
complex. At the simplest the node can post data whenever it is awake. At the
more complex end of the spectrum a node can wake, send a post value and
repeat until an acknowledgement is received until sleeping. All of these
solutions require the addition of a real-time clock module to the hardware. For
the interval to be pre-defined there must also be some way of storing the times
to send data back to the server.

Another requirement is the use of low-power radios where low-power is
defined as low power consumption. This step will involve choosing a suitable
low-power radio that has enough range for the system to function on site. The
data needs to go from the lake and over a hill before reaching the gateway. The
total distance covered is approximately 1km. Under a best case scenario this is
likely to require at least one repeater on the top of the hill. The requirement
also states that this system must be able to communicate with the server
through the gateway. To this end, as previously mentioned a specification has
been developed for this project by the author and the gateway developer[4].
Depending on the radio chosen a network layer may have to be implemented.
To meet CAT's needs most closely, a mesh or hybrid tree-mesh would need to
be implemented.

CAT also wants something that runs on the Arduino platform. The
Arduino platform includes a large range of products both official[6] and
community based. The author chose to use official Arduino products rather
than community based for the better support and smaller development time.
The most commonly used chip on Arduino boards is the ATMega328P. This is
used on the Uno, Duemilanove and Pro Mini. The Pro Mini is mostly a breakout
board for the ATMega328P. It also has some support circuitry such as status
LED's, a voltage regulator and an oscillator. The only more basic ATMega328P
set-up uses a chip on breadboard with internal clock. Interestingly, a bare-
bones set-up costs more than an Arduino Pro Mini. The Arduino Mega should

1 Nodes are a routing radio or sensor with radio connected to the low-power radio
network.

Page 7 of 47

Lake Level Monitoring Tim Stableford (tis4)

also be noted for it's increased I/O and program space as a suitable candidate,
however its power consumption and cost are higher. Some other ATMega
AVR's are supported by the community such as the ATMega644P and the
ATMega1284P. They are chips which can come in DIP formats to make them
good for prototyping, unlike the Arduino Mega. They are also the chips which
in terms of price and capability are between the ATMega328P based boards
and the Arduino Mega.

Previously mentioned has been the need for the components such as the
processor to be low-power. This is because one of the requirements are that
the nodes run from non-mains power such as solar. To this end when
components are selected, there power consumption must be kept in mind. The
most important of these is the processor and real-time clock. The reason for
that is that these are the devices which will be on the most. Other components
such as the radio shouldn't use huge amounts of power but won't be on for
long, so their power usage is not as important. Supporting circuitry should also
take into account this low power use and voltage regulators such as for the
radio should have low quiescent current. From a software perspective sleep
modes should be implemented to conserve power, such as disabling the sensor
and radio during periods of sleep. Further to this the ATMega chips support
low-power sleep modes to conserve even more power.

CAT would also require that one of the software deliverables is a
communications stack/library for the Arduino that supports encryption. This
library will have to implement the specification previously mentioned[4] and
provide an encryption layer between the networking layer and the message
parsing layer. The encryption has to use little memory and as small code space
as possible while being reasonably secure. Issues such as recording and
repeating encrypted messages should be considered here.

1.2.2. Feature List
CAT have expressed interest in using an Agile methodology. The specific

methodology has been left up to the author who has chosen to employ FDD
(Feature Driven Development)[7]. FDD will be further described later in the
document. Feature lists in FDD are grouped into feature sets which are groups
of similar features. From the given stories the following ordered feature list
was created:

• Read Lake level

◦ Create hardware to interface with the sensor. (February 2015)

◦ Convert sensor reading to pressure in kPa. (April 2015)

• Communications

◦ Self-contained Communications Stack. (February 2015)

▪ Register nodes to the gateway.

▪ Register attributes to the gateway.

▪ Post values at a specified interval to the gateway.

▪ Respond to requests for values to the gateway.

◦ Send data back to the server through the gateway. (March 2015)

▪ Interface radio with the Arduino.

▪ Build interface layer between radio and communications stack.

◦ Encrypt communications. (April 2015)

Page 8 of 47

Lake Level Monitoring Tim Stableford (tis4)

• Power Management (April 2015)

◦ Create hardware which runs from non-mains power.

▪ Create circuits using low-power components.

▪ Create code for going into low-power modes.

◦ Create code for sleeping for pre-defined intervals.

1.2.3. Initial Choices
At this stage of development there is little room for anything outside of

the scope of the features list. There are however a lot of different
implementation options for each of the given features. This includes both
hardware choice and software implementation. There are several key areas
which need to be decided before going into development as they will have a
greater impact across different features and to the second developer who is
creating the gateway.

The first decision to be made was which Arduino to use, since using the
Arduino platform is a requirement. Sticking to the official Arduinos a good
choice would be the Arduino Fio, this is an Arduino Pro Mini with charge
controller attached and connectors for a lithium battery. However, this board
is not good value for money considering the price increase over the Arduino
Pro Mini2. The Arduino Pro Mini can also have a clock speed of 16MHz
compared to the 8MHz of the Arduino Fio which uses the ATMega328P internal
clock. The other official Arduino to consider is the Arduino Mega, but this does
not come in a low-power format without USB chips and voltage regulators, it's
also more expensive than the ATMega328P. From this the ATMega328P is the
best choice, the biggest downsides which will effect development being the
lack of code space and memory.

The choice of radio is also important because depending on the level of
implementation of libraries, these may have to be extended. An example of
this would be the RFM12B[8]. This radio module has very little networking
support except a small address range. It doesn't support meshing or routing
and so that would have to be implemented in software. It's range is also limited
to 300m, so it is not a suitable candidate for installation at the CAT site. Other
modules such as the nRF24l01+LNA+PA[9] have a greater range, more features
and better library support. A developer who goes by TMRh20 has enhanced
existing Arduino and Raspberry Pi libraries for the nRF24l01 called RF24 and
RF24Network[10]. This developer has also created another layer on top of the
RF24Network layer called RF24Mesh. This adds limited meshing to the
nRF24l01 radios in a tree-based topology with a master node coordinating. This
radio also has a range of 1km in line of sight. This makes it ideal for use at the
CAT site to meet the requirements they have stated.

At this stage there was also some research done into which encryption
to use. The research at this stage was mainly into using Datagram Transport
Layer Security (DTLS)[11]. This is because CAT had expressed an interest in
using a version of IPv6 called 6LoWPAN[12]. This is a cut down version of IPv6
which is designed for low-power wireless networks. If this were to be used
then using an encryption layer such as DTLS would fit well. It would also be
reasonably radio agnostic and could perhaps even be placed below the IPv6
layer to provide better encryption. However, IPv6 was not used because CAT
wanted a system which would “just work” with IPv6 devices and did not
realise that a translation gateway would still have to be between the EMonCMS

2 The price is based upon eBay prices, April 2015.

Page 9 of 47

Lake Level Monitoring Tim Stableford (tis4)

server and the nodes. The networking layers provided by the RF24 libraries
also provide similar functionality to 6LoWPAN but have existing
implementations and are far more light weight protocols. Combining all of
these makes 6LoWPAN a bad choice. The initial decision from here was to use
a Diffie-Hellman key exchange and AES-128 on top of RF24Mesh.

1.2.4. Objectives
The objectives have been stated in the feature list but it does not state

deliverables and there are a few stretch goals presented by CAT too. The
features list implies the creation of hardware and software however, the
intention is to deliver example hardware to CAT comprising of a sensor/radio
board and the sensor itself with working software on. It's also a goal to deliver
CAT enough information so that they can continue to develop the hardware
and software. This includes circuit diagrams and well documented code.

CAT's stretch goals were all based upon expanding the system to include
more nodes or using it as a data relay, these are as follows:

• Monitoring the flow of water into the lake which water level is being
measured.

• Relaying weather data back from on-site wind turbines.

• Monitoring the water level of a second lake.

The biggest of these stretch goals is relaying data back from on-site wind
turbines. This is because each wind turbine stores weather data in a different
way, some have serial outputs and some write to SD card. Interfacing with
these systems could be very complicated so this is an unlikely stretch goal. The
one which would be accomplished first would be monitoring a second lake as
that is just expanding the system.

1.3. Process
CAT requested that the projects done for them use an Agile

methodology. Agile methodologies have the advantages of adaptive planning
and continuous improvement. The agile methodology chosen was feature
driven development (FDD)[7]. The key aspect of feature driven development
compared to other Agile methodologies is that it has some upfront planning,
this planning is then expanded upon and improved at the beginning of each
feature. It also uses individual class ownership unlike other Agile
methodologies such as Extreme Programming which use collective class
ownership.

The reason FDD was chosen over other Agile methodologies is because
it was unlikely that the stories would change significantly and some upfront
planning can increase productivity in later stages. This is unlike in Extreme
Programming where the design emerges from coding. This can cause problems
where code has to be mostly rewritten to support a later story and can involve
some wasted time. It does have benefits over FDD though such as a higher
emphasis on testing and peer review which can create higher quality code on a
low level even if the system when put together does not have a good design.
Scrum is similar to Extreme Programming in that it has no upfront design and
the major advantage it seems to have is that is scales better, such as the idea of
a “Scrum of scrums”. It has much less of an emphasis on peer review and
testing though, which makes it inferior when applied to single person projects
such as this.

Page 10 of 47

Lake Level Monitoring Tim Stableford (tis4)

1.3.1. Roles
FDD sets out many different roles and is designed to be used in a team.

The primary roles set out are[14]:

• Project Manager. This is the administrative head of the project whose
work may involve reporting projects and managing resources.

• Chief Architect. Primarily responsible for the overall design of the
system. Also provides support when overcoming technical hurdles.

• Development Manager. Leads day to day development activities. Also
resolves everyday conflicts between chief programmers.

• Chief Programmers. In charge of groups of between three and six
developers. This role ideally is filled by developers who have done the
entire development cycle several times.

• Class Owner. Developers who do the bulk of designing, testing and
coding under the guidance of a chief programmer.

• Domain Experts. This can be a range of people including sponsors or
business analysts.

These roles can be filled by one or more people. In the case of this
project they will all be filled by a single person. This could make several roles
redundant, such as the difference between chief programmers and class
owners being insignificant. The domain expert will not be on the team but will
be a contact at CAT available through email.

1.3.2. Overall Model
The first iteration, or initial planning stage involves creating a high-

level scope. This includes a system overview, feature list and can also include
sequence diagrams and class diagrams. Subsequent iterations then focus on
developing each feature and during the development of each feature there is a
planning/design stage, involving documentation such as class diagrams, then
that is followed by building it and improving the initial iterations
documentation.

The first step of the initial iteration is often to form a modelling team.
The modelling team is a core group of engineers which have domain specific
knowledge. This is a project for one person so the author will be the modelling
team. The next step is that the modelling team, the author, gives a domain
walk-through, that is the background section of this document. The modelling
team then analyses source documents such as user guides or in this case,
stories. With these documents the modelling team then splits into small
groups each creating a basic model of the system. Before that step occurs the
chief architect may elect to create a straw man model, which is just a core
design. The designs produced by each of the modelling teams is then compiled
into one design by the modelling teams and the chief architect. This may be
repeated until a satisfactory design is produced. Notes are also added to the
design to supplement the main documents where necessary. The documents
produced by this development stage are then reviewed. This will be modified
to be done by one person by creating a straw man model initially and adding
some detail to it including notes, the review will be done informally as it is
unlikely the author will have any modifications. A lot of detail though will be
added during the iterations. The primary output of this stage is class diagrams
focusing on what classes are within the domain, how they are connected and
what the restraints are between the classes[13]. Secondary outputs can be
design justification and sequence diagrams.

Page 11 of 47

Lake Level Monitoring Tim Stableford (tis4)

1.3.3. Feature List
The next step in FDD is to create a feature list. The author elected to do

this before creating the design because it seemed a more logical step to place
first since it is more abstracted from the implementation than class and
sequence diagrams. The first action in creating the feature list is to create the
feature list team. The team should consist of the chief programmers from the
previous stage. The feature list is then created by splitting the system into
domain groups and decomposing the design into areas that comprise business
activities. A feature is presented in the form “<action> <result> <object>”. An
example of this is “Create hardware to interface with the sensor”. Features also
must take no longer than two weeks to complete, if they do then they must be
split into sub-features. It isn't expected that features go so low as to define
getters and setters. The feature list is then assessed by the feature list team and
the customer. The output of this step is a feature list split into subject areas.

1.3.4. Plan By Feature
The third step in FDD is to plan by feature. This is where the order of

tasks in the feature list is decided and completion dates assigned to each
feature. As with the other steps the first sub-step in planning by feature is to
form the planning team. This team consists of the development manager and
the chief engineers. The first sub-step is to determine the sequence and attach
completion dates to each feature. These dates should only be as accurate as a
month. There are a number of factors for deciding the order in which to
complete features. These are:

• Dependencies between features.

• Balancing load across class owners. This will not be considered in a
single person project.

• Risk management. Bringing forward high risk or complex features.

• Consideration of external milestones. In terms of this project this will
not be considered as there is only a single delivery date.

There are also other sub-tasks defined for this task, one of which is
assigning business activities to the chief programmers and assigning classes to
developers. These tasks are irrelevant for a single person project. A self-
assessment should be carried out on the output of this step, the feature list
with dates. This will be an informal check that there won't be dependency
issues and that time scales will work.

1.3.5. Per Feature Activities
After the initial planning stages there is then a set of tasks which is

repeated for each feature. Sometimes it may be the case that multiple features
are completed in a set as they use the same classes, this depends on what the
chief programmer chooses to do with the features assigned to their team.

Design By Feature
As with other steps the first thing done is to form a team, a feature team

in this case, consisting of the relevant class owners as decided by the chief
programmer. The domain expert may then give an overview of the domain
area to the feature team, this is an optional step. Another optional task is then
to study external documents, for some features such as simple ones this is not
necessary. The planning team should then create sequence diagrams for the
features to be designed and any alternatives or notes should be included. The
chief programmer then uses this to enhance the original object model. This can
include updating of any initial documentation such as class diagrams and

Page 12 of 47

Lake Level Monitoring Tim Stableford (tis4)

sequence diagrams. The feature team then adds method and class prologues
for their relevant classes. Lastly a design inspection is carried out by either the
feature team or with other project members depending on what the chief
programmer decides. The output from this task is the improved
documentation.

Build By Feature
Each member of the feature team now implements the classes

necessary to meet the design proposed in the previous step. The code is then
reviewed by any or all of the feature team and the chief engineer. The code is
then tested using unit tests and the chief engineer decides if any feature tests
are required.

Page 13 of 47

Lake Level Monitoring Tim Stableford (tis4)

2. Design

2.1. Overall Architecture
The design for this project is both hardware and software. The initial

design started with some prototyping which will be detailed in
implementation. And there was also the addition of a second Arduino on the
sensor board, this is shown in the following block diagram of the final system.

Fig 1. A block diagram showing the final layout of the hardware.3

The system is split into two parts, the communications board and the
sensor interface board. The communications board is designed to operate as a
router when no sensor interface boards are connected to it. Simple sensors
such as a 1-wire temperature sensor could be directly connected to the router.
Timing sensitive communications require a separate Arduino though as the
interrupts are taken by the SPI communications with the nRF24l01. The serial
interface on the radio Arduino is used for debugging and configuration so
connecting sensors to it makes the system far more difficult to debug. This is
the other reason that a second Arduino was chosen for interfacing with the
pressure sensor as Modbus is very timing sensitive. Circuit diagrams will be
included as an appendix to this document. The block diagram in Fig 1. gives
enough of a hardware summary that further detail will not be required for a
good understanding of the system.

The radio board portion is where most of the code will be stored. This
section will handle incoming packets from the gateway, manage the mesh and
respond to requests. It will also be in charge of power management, disabling
the sensor board and sleeping for set times. From a software perspective the
code is split into libraries for sleeping, parsing EMonCMS packets and
configuring the node. There is an overarching sketch which interfaces with the
radio, retrieves the value from the sensor and converts it to pressure in kPa.

3 3 Wire is a custom protocol for this RTC that can be done any any IO ports at low
speed[32].

Page 14 of 47

Lake Level Monitoring Tim Stableford (tis4)

This sketch also controls whether the device should be in configuration mode
which is decided by a switch on the board. This board also makes use of
several Arduino core libraries SPI, EEPROM and Wire[16]. It also makes use of
RF24, RF24Network and RF24Mesh by TMRh20[10]. For sleeping the Time[19]
and DS1302RTC[18] libraries. For encryption it makes use of the DES
library[20]. Several other encryption mechanisms and libraries were
considered, primarily AES-128. This library was chosen over others because it's
been implemented on both Arduino and Raspberry Pi, the respective hardware
for nodes and gateway.

The sensor board will poll the pressure sensor when it is enabled and
will respond to requests over I2C from the primary board for this raw sensor
reading. The board will also do voltage shifting as necessary to power the 5V
MAX485 and the 9-30V pressure sensor[15]. The software on this board uses
the Arduino Wire library[16] for interfacing over I2C with the radio Arduino.
The Modbus implementation is very basic and only has the command
implemented to read the sensor value. The Modbus libraries for Arduino are
not particularly well written. The most well maintained one contains a timing
bug where it does not wait after setting transmit enable to high before
beginning transmission[17]. The original intention was also to have Modbus
done on the radio board, and because of the limited code space a more simple
implementation was chosen to save space.

The third piece of work done is a configuration user interface and
debugging tool. This is a simple Java GUI that interfaces with the radio board
over serial when it's in configuration mode. This piece of software was not
initially planned because the original intention was to have as much as
possible configure dynamically over the mesh. This fell through for several
reasons though, primarily that there is a library limitation in RF24Mesh that
means it has to have a static address, this is configured at start-up and is
unique per node and it cannot communicate without it. From this the GUI was
developed as a debug tool to set this address, synchronise the RTC and fetch the
available amount of RAM. This tool further developed as it became necessary
to calibrate the pressure sensor and use pre-shared keys for encryption. As
such, this program can synchronise and read the RTC, get free RAM, set and get
EEPROM values, load a binary file to EEPROM, calibrate the pressure sensor
and retrieve the depth in meters.

2.2. Detailed Software Design
As mentioned in Overall Architecture the software is split into three

programs. The following sub-sections will be detailing what each of these
programs do and their structure. They will also detail the tools used to create
each program. The design detailed here is the final design from FDD. Most
design decisions will be documented under Implementation, some will be
covered in here.

2.2.1. Sensor Board
The simplest program is the software running on the sensor board. It

consists of a single class and an Arduino sketch which handles I2C, initialises
the PTMNRS485 class and polls the sensor for the current reading through the
PTMNRS485 class. The sketch also outputs the read value to the serial port.
Arguably the RS485/Modbus portion of this code could have been done in the
main sketch file too. However, putting it in a separate class allows it to be
made into a library, and as previously mentioned in this report the original
intention was to have the PTMNRS485 class on the radio board. This wasn't
possible because of timing issues though. There are also other iterations of this

Page 15 of 47

Lake Level Monitoring Tim Stableford (tis4)

class that use hardware serial instead of software serial in an attempt to get
this to run on the radio board, this was unsuccessful.

Fig 2. Class Diagram for the sensor board software.

2.2.2. Radio Board
The radio board consists of the main sketch and the following sub-

elements:

• EMonCMSLib. This is the code for parsing incoming radio packets,
creating packets and responding to packets. It also contains the code for
registering the node and its attributes.

• SerialEventHandler. This code is only used in configuration mode and is
used to do initial configuration of a node and some debugging.

• Sleep. This code loads sleep times from the EEPROM and gets called
regularly, shutting down and waking the node at appropriate times.

• Debug header. This header file contains the definitions for enabling and
disabling debug messages on both Linux and Arduino.

• Definitions header. This contains global constants such as the EEPROM
map and pin map.

Each of these elements is then pieced together by the main sketch. The
main sketch also does initial hardware set-up such as setting pin modes,
turning hardware on and initialising external libraries. Encryption is also
handled in the main sketch. Each of these classes will be explained separately
and presented in individual class diagrams and there are no
interdependencies between the classes.

Page 16 of 47

Lake Level Monitoring Tim Stableford (tis4)

Fig 3. Class diagram of sleep class.
The sleep class is responsible for enabling and disabling all peripherals

and powering down the Arduino on the radio board. The sleep times are stored
in the Arduinos EEPROM and set through the configuration program. If there
are no alarms then the device is assumed to be constantly awake as this may
be a feature required of nodes which only operate as routers. Alarms are
stored in the EEPROM as an array of the WakeTime structure. The hour field of
this structure can be 0-23 and also 255 for the case that an Alarm may want to
operate hourly. If the Sleep class detects it is time to sleep then it shuts off
sensor boards, radio and RTC. It then puts the Arduino into a sleep mode with
wake activated by the watchdog. The maximum time for this watchdog is 8
seconds, so every 8 seconds the class checks whether it should be awake and
then sleeps again or enables all the peripherals and returns from the
checkSleep method.

Page 17 of 47

Lake Level Monitoring Tim Stableford (tis4)

Fig 4. EMonCMS library class diagram.
Fig 4. Shows the class diagram for the EMonCMSLib portion of the radio

board program. This program parses incoming requests for attributes and
requests values from registered callbacks. The callbacks shown in the diagram
are a C++ interface, this isn't true, as for compatibility with Arduino sketches it
uses C function pointers for callbacks in the actual implementation. The
library is designed to be radio agnostic which is why there are no references to
the RF24 radio. DataItem and the values in DataTypes are defined in the Low-
Power Radio Communications Specification[4]. Attribute reader callbacks are
registered when the library is initialised and saved into internal storage. The
class is capable of sending all required types of message including node ID
requests, attribute registration requests, attribute posting and responding to
attribute requests. There are wrapper functions around these basic requests
such as registerNode, which requests a node ID and then when this is
successful registers the attributes. Another example is the postAttribute
method which calls the attribute reader for a given attribute and then builds a
post request and sends it to the gateway. There are callbacks for when a node
ID request has succeeded and an attribute has been successfully registered so
that the registration status can be saved to EEPROM and not repeated on each
Arduino reset.

Page 18 of 47

Lake Level Monitoring Tim Stableford (tis4)

Fig 5. SerialEventHandler class diagram.
Fig 5. Shows the SerialEventHandler class. This is a simple class that

reads serial data and parses it into various requests in a switch statement. This
is the Arduino half of the configuration system. It supports synchronising and
reading the clock, reading and writing EEPROM, getting free RAM, getting the
raw pressure reading, setting calibration values for the sensor and getting the
depth in meters. The method for getting freeRam is accessible publicly to allow
it to be logged in other formats.

2.2.3. Configuration Software
The configuration software is a program written in Java which

interfaces with the Arduino over serial. It uses the JSSC library for cross-
platform serial communications[21]. It also uses the SimpleRegression class for
the Apache Commons Math library[22] for calibrating the depth sensor. The
calibration works by requesting raw sensor readings from the depth sensor.
The user then enters the depth in meters in the GUI, this is then fed into the
SimpleRegression class which calculates a line of best fit. After several repeats
the SimpleRegression class outputs a gradient and y-intercept value. These
values are then copied as floats over to the radio board. The depth sensors are
sensitive enough that they pick up changes in atmospheric pressure based on
elevation, so there is also a feature to set the base pressure. Fig 6. Shows the
class diagram for the configuration software. An alternative approach to
configuration could have been to have it Arduino side and use a serial console.
This has the advantage of being more platform independent as it can be used
from any system with a serial console, however it also means using up limited
program space and having something which is less user friendly. It also would
have been difficult to upload shared keys, they would have had to be entered
manually in hexadecimal.

Page 19 of 47

Lake Level Monitoring Tim Stableford (tis4)

Fig6. Class diagram for the configuration program.

2.3. Tools Used
The operating system used to develop on was Ubuntu 14.04 Linux, the

tools used in this project however are platform agnostic. Linux was chosen for
the comfort of the author using command line tools such as Git.

The tool used most throughout the project is the Git version control
system. This is a highly configurable version control system capable of
distributed and centralised repositories. It also has very good branching
support compared to other version control systems such as SVN. In this project
Git[24] has been used in a centralised manner with repositories being pushed
to a single server and then periodically backed up to various computers using
the Bittorrent Sync tool[23].

For the configuration program portion of the project, the Eclipse IDE[25]
was used for development in the Java language. Other IDEs could have been
used for this but the author was most comfortable with Eclipse. Java was
chosen as it's a very quick language to develop in and has very good debugging
support and is hypothetically write once run anywhere. In reality the library
I've chosen for serial communication only has Mac, Linux, and Windows
support. The configuration program also used Git for source control.

The programs on Arduino were developed using UECIDE[26]. UECIDE is
a fork of the default Arduino IDE offering a much easier user experience for
code browsing, highlighting compiler errors and code editing. Git was also
used for source management for the two Arduino programs. In addition to
these the EMonCMS Library was designed to be compiled on Linux for unit
tests and makes use of GCC, make and the Geany text editor for code editing.

Page 20 of 47

Lake Level Monitoring Tim Stableford (tis4)

3. Implementation
At this point of the project there was no design other than the features

list. For each selected feature or feature set there was a prototype phase where
hardware was breadboarded or software hacked together. This was then put to
the side and a design consisting of class diagrams created and then the
software implemented. The testing is sporadic at best because most of the code
is on the Arduino. Some is tested on Linux, most testing however is functional
rather than unit driven, unlike is often the case in FDD. The configuration
program is the exception to this, prototype, design, build, test cycle as this was
unplanned and created as a tool to aid development. This was developed and
expanded throughout the project as necessary and then a class diagram
created. One thing noticed early on in development was the allocating and de-
allocating memory can easily cause heap fragmentation on an Arduino, which
with its limited memory can quickly lead to a crash. This is why a lot of the
code does things in unusual ways to keep memory allocation stack based.
Using function pointers instead of C++ interfaces are to aid compatibility with
default sketch files, something also realised during the following
implementation stages.

3.1. Iteration 1
Several features from the feature list were often worked on at a time

and although done in a mostly linear fashion there is some overlap between
the prototyping phase of the next feature as one feature comes to a close. The
first feature selected to be worked on was creating hardware to interface with
the sensor. This feature actually stretched over most of the project as
refinements were made upon the initial prototype. The first implementation of
the sensor interface consisted of a MAX485 on a breadboard connected to an
Arduino Mega and a 12V power supply connected to the sensor.

The PTM/N/RS485 series of sensors can communicate either over
Modbus/RS485 or 4-20mA. 4-20mA forms a current loop between the sensor
and the receiver, this value is then read locally. This has the benefit that from a
software perspective it's easier to implement however it cannot access other
features of the pressure sensor and if the hardware is faulty for measuring
current it may not work. RS485 is a specification for digital data transfer over
long distances, it uses a differential pair and transceivers are available in half
or full duplex configurations. Modbus is an addressable transport layer on top
of half or full duplex RS485 that has several built in functions such as reading
remote registers and setting an output state. This makes Modbus far more
flexible than 4-20mA which is why Modbus was chosen to interface with the
pressure sensor.

The first step in software development in this section was deciding
which library to use, if any. The first library considered was the Arduino
Modbus Master library[27] which as an object-orientated library with a simple
API. Upon beginning to create the sketch for this library I realised the publicly
accessible documents for the sensor were inadequate, for instance it doesn't
contain the address of the device or details on the operations for reading the
sensor value. This task was then put on hold while a request for more
documentation was made to the company, during this time the self-contained
communications stack was started. When the documentation arrived which
does not allow redistribution the author attempted to use the Arduino Modbus
Master library. Inexplicably this library did not work and so another library
was used, the SimpleModbusMaster library[28]. After filling in the details, this
library didn't work either. The next step in the debugging process was to make

Page 21 of 47

Lake Level Monitoring Tim Stableford (tis4)

the most basic code possible. Some of the documentation supplied by the
manufacturer contained an example packet for requesting pressure data, with
CRC included, using this packet and Modbus specification documents[29] a
basic Arduino sketch was created with the correct timings. This sketch
successfully retrieved the raw pressure reading from the sensor. With a
working example and an increased knowledge of Modbus from the previous
debugging it was then possible to find a bug in the SimpleModbusMaster
library where there was no delay between enabling transmit and beginning
transmission. Since the feature set required for reading pressure was only a
small sub-set of that implemented by SimpleModbusMaster, the author elected
to develop the sketch into a library which could use software based serial.
From this the design in Fig 2. was created, implemented, and its functionality
checked.

As previously mentioned there was a pause during the development of
this first feature where the self-contained communications stack was started.
The self-contained communications stack is an implementation of a binary
protocol[4] based on a JSON based protocol[5] set out by CAT. The specification
was developed primarily by the author with contributions from Jonathan
Newman on sections relevant to encryption and key exchange. The code for
this library was initially prototyped on Linux and basic functionality tested
using unit tests until it was ready to be used on an Arduino. The first methods
implemented involved building node ID requests. The type of a message is
passed into the network sending functions of the RF24 libraries and the header
for the communications stack contains the size of the incoming data, the
number of items (where an item is any data type of any length [see
specification[4]]) and the status according to the status codes set out by CAT.
Not including the message type in the communications stack header was
perhaps a poor decision because if this specification were to be applied to a
radio which didn't have this type byte in the header then another
communication layer would have to be in between to fill this role. The next
function implemented was handling responses from the gateway, this was
initially tested by a mock response to a node registration and later expanded
with responding to attribute requests, posting attributes was also completed at
this stage. The finished product of this is represented in Fig 4.

3.2. Iteration 2
The second iteration focuses around continuing the hardware

prototypes and integrating the software created in the first iteration into this
hardware. The feature set this refers to is “Send data back to the server
through the gateway”. For the part of the system implemented in this project
this involves speaking to the software created by Jonathan Newman, the
gateway software which runs on Raspberry Pi.

In addition to the sensor connected to the radio boards software serial
port the nRF24l01+LNA+PA is connected to the SPI port which power
regulators in place to supply enough current. At this stage the DC-DC converter
for the sensor had also arrived so this was added to make the breadboarded
system portable. The hardware was then tested using the RF24 ping sketches
and the sketch developed in the first iteration to get the pressure sensor
reading. Then a sketch was created which used the communications stack to
request a node ID, register an attribute and accept requests for this attribute.
The attribute wasn't the pressure value to start with, it was simply the time in
milliseconds since the Arduino had last reset, it was done this way so the
developer doing the gateway would have something to test against. This sketch

Page 22 of 47

Lake Level Monitoring Tim Stableford (tis4)

worked with the gateway and so in addition posting data was added to the
sketch and this also functioned correctly with the gateway.

The next step was to get the sketch to read the raw pressure value from
the sensor, register it as an attribute and post it to the gateway. This proved
more complicated than expected. After putting in the code to read from the
sensor the sensor kept returning bad data, this led to trying to use the
hardware serial port with the code previously written and with the
SimpleModbusMaster library. None of this worked and so code was gradually
commented out until it worked again and it seemed to be an incompatibility
between the serial port and SPI, this is likely due to interrupts from the SPI
interfering with the timing of the serial write which Modbus is very sensitive
to. This led to using a second Arduino to do the work of interfacing over
Modbus. This was connected to the radio portion over I2C using the Arduino
Wire library. The reasoning behind using I2C over connecting over serial is for
future expandability, this way it would be possible to connect multiple sensor
boards. This set-up worked and the sketch running on the Arduino connected
to the sensor used the software serial cut-down version earlier developed, this
was used over SimpleModbusMaster to leave the hardware serial port free for
debugging.

At the end of this iteration raw sensor values were being successfully
read, registered with the gateway and posted to the gateway.

3.3. Iteration 3
The third iteration is mainly focused on developing hardware into a

more stable form and creating the sleep code, this is the feature group “Power
Management”. Near the end of this iteration it also became clear that a
configuration tool would be necessary.

The first thing done in this iteration was to draw some circuit diagrams,
sketched out on paper. Some things were changed during the actual building of
the board and some simple elements such as the resistive voltage divider for
measuring battery level weren't sketched out but are still on the board. The
first thing made was the radio board.

Page 23 of 47

Lake Level Monitoring Tim Stableford (tis4)

Fig 7. The final radio board.
Fig 7. Shows the final radio board, there were several improvements

made to this board during development. Initially the header in the top left was
going to be serial with a transmit enable pin. This was revised to be I2C when
the bugs previously mentioned came to light. Just to the right of that is a
resistive voltage divider, this takes the input voltage, a maximum of 5V and
scales it down to 1.1V, the internal reference voltage for the ATMega328P. To
the right of that is a 3.3V voltage regulator, this is there because the nRF24l01
requires a 3.3V power supply but has 5V tolerant IO pins. The reason the whole
system doesn't run at 3.3V is because the ATMega328P can't run at 16MHz at
that voltage, whereas anything above 3.7V is safe[30][Figure 29-1].

To the right of the voltage regulator are pin headers for programming,
to the right of that the Arduino Pro Mini, this has been modified to have the
power and pin 13 LEDs removed to save power, power also does not go
through the on-board regulator, in testing this lowers power consumption in
sleep mode to 0.6mA. The board on the centre left is the radio, below that is a
switch which puts the board into programming mode, where the serial port
can be used for configuration. Originally the RTC was attached by pin headers
but the DS1302 breakout board was very fragile and broke off so the author
elected to attach the chip, its clock and the backup battery to the board. The
battery for the clock is surface mount so is attached to the other side of the
board.

Alternately to implementing this on a breadboard it could have been
made into a printed circuit board (PCB), but as most of the hardware would be
connected to it through pin headers it adds little benefit to the time involved to
develop a PCB. The brown wire attached in a coil on the side of the board is
connected to an input pin on one end and nothing on the other, the purpose of
this was to generate entropy for the Diffie-Hellman key exchange intended to
be used.

Page 24 of 47

Lake Level Monitoring Tim Stableford (tis4)

With the RTC attached it became apparent that this would need testing.
This is where the configuration GUI comes in. The configuration GUI was
created by the author for debugging a different project that used similar
hardware such as the DS1302 RTC.

Fig 8. The original program that the configuration tool is based on.

Fig 9. The finished configuration GUI showing some example output.
The configuration program sends very simple binary messages which

have a header consisting of 2 bytes, the first is the message type, the second is

Page 25 of 47

Lake Level Monitoring Tim Stableford (tis4)

the data size. Following that is the data, which may consist of nothing or, for
example the current time. Pressure can be calibrated by checking the
“Calibrate?” button and pressing “Get Pressure” while alternating the depths
and entering the depth in meters. The calibration values appear in the boxes to
the left of “Set Calibration” so they can be copied in externally. The button at
the botton will return the depth in meters of the sensor. The user interaction
on this is not at all intuitive which can be attributed to its origins as a
development tool. Given more work this GUI could be vastly improved to be an
actual configuration tool. The feature that is perhaps needed most is the ability
to interact with an EEPROM map and manipulate data in there in a more
intuitive manor than setting single values or dumping a file to EEPROM.
Various configuration values are stored in the EEPROM such as whether the
node is registered, its node ID, its radio node ID and sleep times.

The final feature implemented in this iteration was the sleep modes.
This was prototyped in two halves. The first half was putting the device into
minimum sleep mode. This means disabling any potential external boards so
setting EN1 and EN2 to low on the sensor board header, powering down the
radio, switching off the RTC and then putting it into watchdog sleep. This went
reasonably painlessly and was put into the Sleep class. A problem that did
occur however was when resuming hardware was not re-enabling. The initial
testing of the sleep code was done while the device was in configuration mode,
the radio board would start, sleep and then enter programming mode. The
getting and setting time features no longer worked because the RTC was still
switched off, this was a quick fix though.

The second half of the prototype was to create the alarms. The first step
in this was figuring out how to store the alarms, initially considered was to
have alarms that repeat daily at a set hour and minute, this however is a poor
use of EEPROM when the device is likely to be waking multiple times every
hour. The solution to this was to have a special value for hour, if this value is
set then it is considered as every hour. The class is designed to be used by
setting it up on device start-up, loading the alarm times from EEPROM and
then calling a blocking method once per loop, if it is meant to be asleep this
function disables all peripherals and sleeps until the next wake time and then
returns from the method. The SerialEventHandler code is also based upon
code from the same project but modified to add support for the new features.

After implementing sleeping the next thing to do was to create the final
version of the sensor board, with the I2C rather than serial interface.

Page 26 of 47

Lake Level Monitoring Tim Stableford (tis4)

Fig 10. The final hardware for the sensor board.
Fig 10. Shows the final hardware for the serial interface with the extra

Arduino, power controls, regulators and converters. Power goes first into the
Arduino and a transistor. From the transistor it goes into the DC-DC converter,
from there to the sensor and the 5V voltage regulator and that feeds the
MAX485 chip. This hardware was far more problematic than the radio board
for minimising power consumption. The end result was 8mA after several
improvements. Originally the Arduino on the sensor board was connected to
the 5V voltage regulator but then it still drew power when disabled which is
why it's fed directly from the other Arduino.

There's also the addition of a diode before the DC-DC converter this also
dramatically lowered power consumption by about 10mA. Somewhere in the
circuit there is still a circuit forming and drawing power despite the transistor
set to an off state. However, even if the device was drawing 9mA constantly
this would provide 222 hours of runtime with a 2000mAh lithium battery, this
means it's still capable of being solar powered and meeting the requirements.
The radio board is far better for power consumption, this does mean the
routers will be very power efficient. A solution considered for the power
leakage to the sensor board was to use relays, this does have the problem of a
lot more circuitry to avoid a bug rather than solve it and relays use power
while on.

Page 27 of 47

Lake Level Monitoring Tim Stableford (tis4)

Fig 11. The radio and sensor boards together.
The system was then connected together and tested against the gateway

for successful registration and posting for pressure values. Connecting the two
boards together caused no issues. An alternative approach to the hardware
could have been to have the boards combined into one but that doesn't allow
for a modular approach where hardware can be re-used as simply.

3.4. Iteration 4
The fourth iteration is mainly finishing touches, adding encryption and

adding pressure sensor calibration. The pressure sensor calibration was the
first thing to be implemented, followed by encryption, to an extent.

Initial attempts at sensor calibration used just two or three points into a
set formula taking the average gradients between the points, this works
roughly and produces reasonable calibration data but it leaves a lot of space to
be improved. The Apache Commons Math library includes a class called
SimpleRegression this uses the least squares method to calculate a line of best
fit much more accurately than the authors original model. This calibration is
done in the configuration program to keep minimize code usage on the
Arduino. The biggest problem with calibration is that if it is calibrated at sea
level and then carried up 100m or so the calibration becomes invalid and it
needs to be recalibrated. The attempt to fix this was adding a displacement to
the read sensor value based on a base pressure and its difference between the
x-intercept produced by the calibration data. In testing this has proved
unpredictable and can produce negative numbers. This isn't a huge issue
though as it can be calibrated at the installation site, such as CAT's lake. This
depth in meters is then converted to kPa using a constant supplied by CAT.

Encryption was planned to use Diffie-Hellman key exchange and AES-
128, this completely fell through though. The first cause of this is Diffie-
Hellman, doing modulus or arbitrary number arithmetic with the limited
memory of and Arduino to the degree Diffie-Hellman asks for is difficult to

Page 28 of 47

Lake Level Monitoring Tim Stableford (tis4)

impossible to do in a meaningfully secure way, at least the author was unable
to find a work around to this problem. The author decided to use pre-shared
keys instead, installed on a per node basis during the initial necessary
configuration of each node, this is why there is an option to load files to
EEPROM, to load key files. From here development proceeded to use the pre-
shared key and AESLib[31].

The system at this point was fully working with AESLib although not
fully tested, upon attempting integration with the new version of the gateway
supporting encryption packets were decrypted jumbled. The first thought was
that perhaps one of us was using CBC rather than ECB, CBC is cyclic block
chaining and is more secure when sending multiple blocks, ECB is much better
for single blocks. It did turn out we were using the wrong ones so both
switched to ECB which is simpler because it doesn't require an initialisation
vector, the messages were still being incorrectly decrypted. Debugging
messages were then added to ensure that the messages being sent were the
same as the messages being received, which also turned out to be the case, so
the problem still existed.

The next step which was attempted was to use a different encryption
library since the gateway and the node were using different AES
implementations. The library which became obvious, and is almost as secure
as AES-128 is an implementation of Triple-DES called ArduinoDES[20]. This
library uses 112 bit keys rather than 128 bit, making it only marginally less
secure. This library runs on both Arduino and Raspberry Pi, which is why it
was chosen over other libraries. Upon testing this library though in place of
the AES library the encryption still did not function, and as of the end of the
project still does not.

3.5. Review
To summarise all features, except encryption have been implemented,

there is still room for improvement on power management though. Following
is a copy of the feature list with comments added reviewing each
implementation.

• Read Lake level

◦ Create hardware to interface with the sensor. A final
implementation was done on strip-board after overcoming the
timing difficulties with Modbus.

◦ Convert sensor reading to pressure in kPa. This was done in two
stages, converting to depth and then applying a constant to convert
to pressure.

• Communications

◦ Self-contained Communications Stack. This was done in the early
stages and tested on Linux.

▪ Register nodes to the gateway.

▪ Register attributes to the gateway.

▪ Post values at a specified interval to the gateway.

▪ Respond to requests for values to the gateway.

◦ Send data back to the server through the gateway. Successful
communication between the gateway and the radio was established
and data sent to the gateway.

Page 29 of 47

Lake Level Monitoring Tim Stableford (tis4)

▪ Interface radio with the Arduino.

▪ Build interface layer between radio and communications stack.

◦ Encrypt communications. This was attempted but was unsuccessful,
the hypothetical implementation is still included in delivered code, it
is unknown whether the issue is with the gateway or node.

• Power Management.

◦ Create hardware which runs from non-mains power. This is done
and the only two flaws are that the battery level monitoring cannot
be relayed over the communications specification given by CAT and
the sensor board draws unnecessary power when disabled.

▪ Create circuits using low-power components. A parts list and
circuit diagrams are included as an appendix, for example
showing the choice of voltage regulators to have a low quiescent
current.

▪ Create code for going into low-power modes. This works really
well on the radio board, significantly lowering power
consumption.

◦ Create code for sleeping for pre-defined intervals. This is
successfully done and has undergone basic functional testing but
should have more extensive testing done.

Page 30 of 47

Lake Level Monitoring Tim Stableford (tis4)

4. Testing

4.1. Overall Approach to Testing
The approach to testing during this project is primarily functional as

unit tests on an Arduino system are not the easiest to implement. While they
can definitely be done by creating sketches which act as a test harness,
running them would require uploading each test suite to the Arduino. With
this system most components of it are quite interdependent, meaning that if
any part does not work then the whole system will show the result. During
development of individual modules there has been informal testing where the
behaviour of each module and its debug output is monitored to see if it
functions are expected. The communications stack also has a limited number
of unit tests which test basic functionality, the purpose of these though was
more to aid in development by mimicking the radio. The bulk of testing is
functional, these are tests which cover system behaviour on a higher level.

4.2. Unit Tests
The communications stack uses some unit testing to test a few features

through imitating the radio, no other part of the system uses unit tests. The
configuration program was developed as a debug tool originally, which is the
main reason it has no tests, it's also a very simple program that wraps the
serial library it uses and provides a UI. The tests for the communication library
don't use any testing suite because the tests are very simple. These tests are:

• Testing node register request generation.

• Testing generation of attribute register requests.

• Testing posting an attribute value.

• Testing generation of attribute posts.

• Testing receiving a EMon node ID.

• Testing responding to an attribute post request.

4.3. Functional Testing
Most testing as states is functional, these are detailed in the following

test tables. The results in this test table represent the final delivered system.

4.3.1. Sensor Board.
The sensor board is quite easy to test, the software on it will output

either the sensor reading or a failure message over the serial port. The set-up
for this test involves disabling sleep (see EEPROM map in appendix),
connecting the power and ground to the main board and the TX/RX cables of
the serial cable to the sensor board Arduino. The sensor board and radio board
must be connected together and the sensor connected to the sensor board.

Test
Number

Action Expected Result Pass / Fail

1 View the serial output
with the sensor
connected while
lowering the sensor

The value printed to the
serial port should
increase.

Pass

Page 31 of 47

Lake Level Monitoring Tim Stableford (tis4)

Test
Number

Action Expected Result Pass / Fail

into water.

2 Disconnect the sensor
and view the serial
output.

The serial output should
read “Sensor read failed”
every couple of seconds.

Pass

4.3.2. Configuration Mode
The tests in this section refer actions carried out by the configuration

program and their results on the radio board. The set-up requires the radio
board, sensor board and sensor connected. The radio board should also be
connected to the PC through a serial cable. The gateway does not have to be
online. The configuration tool does not test for failure conditions such as out of
range values, these will not be tested.

Test
Number

Action Expected Result Pass / Fail

1 Launch the
configuration program.

The configuration
program prompts the
user to select a serial port,
the port for the Arduino is
listed.

Pass

2 Select the Arduino
serial port and click
“Ok”.

The program launches
into its main screen.

Pass

3 Click the button “Get
Free Memory”.

The log should show the
number of bytes
remaining of the total
memory.

Pass

4 Click the button “Sync
Time”.

The log reports “Device
time updated”

Pass

5 Click the button “Get
Clock”

The time and date of the
host machine should be
output in the log window.

Pass

6 Click the button “Get
EEPROM”.

The log window should
show the EEPROM values
from the address for the
length specified.

Pass

7 In the “Address” and
“Value” fields to the left
of “Set EEPROM” enter
the respective values of
300 and 123. In the
“Address” and “Length”
fields next to “Get
EEPROM” enter 300 and
1. Click “Get EEPROM”.

The log outputs that the
value at EEPROM address
300 is 123.

Pass

8 Create a binary file
with the bytes 0x00,
0x01, 0x02, 0x03, 0x04.
For the “Address” field

The values output match
the test data entered in
the binary file.

Pass

Page 32 of 47

Lake Level Monitoring Tim Stableford (tis4)

Test
Number

Action Expected Result Pass / Fail

next to “Load file to
EEPROM” enter 100,
then click load file.
Navigate to the file and
open it. Get the
EEPROM at address 100
for length 5.

9 Click the “Get Pressure”
button.

A non-zero value related
to pressure of the sensor
should be output to the
log.

Pass

10 Check the “Calibrate?”
check-box and click
“Get Pressure” at
various depths entering
the depth into the GUI
when prompted.

The two boxes to the left
of “Set Calibration” show
gradient and y-intercept
calibration values.

Pass

11 Click the “Set
Calibration” button
with the previously
calculated calibration
values.

The log outputs that the
gradient and y-intercept
are being set.

Pass

12 Remove the probe from
the water and click “Set
Pressure Base”. While
the probe is still out of
the water click “Get
Depth”.

The log should show the
depth in meters and it
should be close to or zero.

Pass

13 Put the pressure sensor
into the water at
measurable depths and
click “Get Depth”.

The depths reported by
the sensor and GUI match
that of the actual depth.

Pass

4.3.3. Communications
The tests in this section focus on the overall operation of the system. The

set-up for this test requires a radio board, not in configuration mode,
connected to a sensor with sensor connected. A serial cable should be
connected to the radio board serial and this connected to a terminal. The set-
up also requires a Raspberry Pi with radio running the sensor gateway
program by Jonathan Newman without encryption enabled. Tests in this
section are difficult to break down and it boils down to checking for certain
output in the program outputs.

Test
Number

Action Expected Result Pass / Fail

1 Using the debug
program set the reset
EEPROM flag and then

The gateway receives and
responds to a
“RegisterMessage”. It then

Pass

Page 33 of 47

Lake Level Monitoring Tim Stableford (tis4)

Test
Number

Action Expected Result Pass / Fail

restart the Arduino to
non-programming
mode. Then start the
sensor gateway.
Monitor the output of
the sensor gateway
program.

receives and responds to
at least one
“RegisterAttrMessage”.
Then every couple of
seconds it should print
“PostMessage received”
and the messages data.

2 Using the configuration
program, enable
encryption using the
same shared key for the
gateway and node.
Repeat test 1 with this
enabled.

The same expected result
as 1 with the addition that
the gateway reports the
incoming encrypted
message and the correctly
decrypted message.

Fail

4.3.4. Sleep
This test section covers sleeping. The set-up should be the same as the

communications functional tests.

Test
Number

Action Expected Result Pass / Fail

1 Using the debug
program set the reset
EEPROM flag.
Configure the sleep as
documented in the
EEPROM map to wake
for 5 minutes several
minutes in the future.
Then reset the Arduino
into non-programming
mode. Then start the
sensor gateway.
Monitor the output of
the sensor gateway
program.

At the time specified for
waking the gateway
receives and responds to
a “RegisterMessage”. It
then receives and
responds to at least one
“RegisterAttrMessage”.
Then every couple of
seconds it should print
“PostMessage received”
and the messages data
until the 5 minutes has
elapsed and then it should
stop receiving.

Pass

4.4. Acceptance Testing
Following the completion of the project and the final demonstration it is

intended that the projects created for CAT are tested and demonstrated on-site
to the staff of CAT. This will involve setting up the system at the lake and either
carrying the gateway away and demonstrating it's still receiving values or
setting up a makeshift repeater, or possibly more than one and demonstrating
that lake values are read correctly.

Page 34 of 47

Lake Level Monitoring Tim Stableford (tis4)

5. Critical Evaluation
This final section will look back at how well the development process

was followed, identify whether the stories were correctly interpreted into
features, how well these were implemented. It will also look into whether it
meets CAT's needs.

5.1. Process
The development process chosen for this project was FDD, it wasn't

followed well but it was a basis for a process that emerged during
development that seemed to take on aspects of other Agile methodologies such
as the refactoring of Extreme Programming and the daily stand-ups of Scrum
which would be me talking to a house-mate about my progress.

The initial iteration of FDD is where it was followed most closely, where
source documents were analysed and a feature list created. This though was
not exactly FDD as FDD specifies that before creating a feature list, sequence
diagrams are created, these are emphasised in various documents describing
FDD. I find that sequence diagrams do little to help my understanding of a
system when entering into someone else’s code, this is why I don't think they
are worth the time invested into creating them. Without these though there
was very little up-front design and I don't think that stuck very closely to FDD,
other than the block diagram created during the early stages of the project.
The feature list should have been sent to the client too during early stages,
something which I neglected to do and should have because this could have
potentially helped to avoid any ambiguities in CAT's original stories.

During the iterations FDD was followed less and the process leaned
more towards the concept of emergent design with prototyping an area of the
system to a limited or fully functional if messy state, creating a design from
this mess and then refactoring the (or re-designing circuits) based upon this
new design. This seemed to work well with the idea of a feature list, where
parts of the system were broken down and created separately before being
integrated together, this meant the design of each of these components never
became too complex. Design outputs from these iterations was in the form of
class diagrams or hand drawn circuit diagrams with attached notes, this still is
not quite the level asked for by FDD but I feel it is adequate in explaining the
system.

5.2. Requirements & Aims Retrospective
I don't think the stories for this project were particularly well written,

there are ambiguities such as “the specified format” which was still being
developed when this feature list was released. If the feature list was based
solely on this I think there would have been a lot of things missing. Early
during development though some extra documents were supplied which
defined these formats and gave a much deeper level of understanding of the
system. I think the feature list did work well and was reasonably accurate at
least at the lowest level of functions, maybe the groups needed to be worked on
a little though because some of them had some overlap in functionality. I also
think my choices of which features to work on during which iterations could
have been better.

The big feature which didn't make it to completion was the encryption,
this isn't a problem for a functioning system though, it is just less secure. Also
time synchronisation ended up not being implemented, despite being defined.

Page 35 of 47

Lake Level Monitoring Tim Stableford (tis4)

The RTC's have a habit of drifting by a few seconds a week which can
cumulatively cause problems for the synchronised sleep, and for a long-term
installation this would need to be implemented.

5.3. Tools
I'm very happy with the tools I chose to develop this project, the main

tool I used, UECIDE has been excellent throughout development and not
something I had used before this project. A particularly notable feature was its
ability to internalise libraries to a project. This means I can give the end result
to CAT as a well organised folder containing all the libraries they need in a
format that can be quickly opened. The code browser is also amazing
compared to the original Arduino IDE, listing functions on the browser along
with grouping headers, sketches, and source files. I did consider for a time
using Eclipse with plug-ins to allow AVR development because even if UECIDE
is a good IDE, it is certainly not as good as Eclipse. I decided against this as I
had previously attempted to set this up and it was unsuccessful and took quite
a lot of time, which would make it very annoying for CAT compared to
following a simple installation.

There were other tools used during this project, such as Eclipse which is
an excellent choice for Java development and then various smaller Linux
utilities such as nano, Git, and other terminal utilities. I think Git was a very
good choice for source control, although this project did not fully stretch it to
its full potential and except for a few branches SVN could have been
substituted in easily.

5.4. Design Decisions
I'm mostly happy with how the design turned out, especially the

implementation of the communications stack because it compiles on Arduino
and Linux and is completely independent of the radio making it very reusable,
possibly to the extent that it could be used in a more advanced sensor node
running Linux. The aspect of the design I'm least comfortable with is the
configuration program since this was more hacked together than anything and
did not undergo the same process as the rest of the code, but while not neat it
does fulfil its function and can be easily expanded in the future, I would
definitely wish to re-write this program though.

The most questionable choice with the largest impact was choosing the
radios because the mesh networking layer has significant limitations, mainly
due to Arduino memory size. The first of these is that each node/router can
only have a maximum of 4 directly connected child nodes, each of these child
nodes can then each have 4 child nodes though. The second limitation is the
maximum number of devices per-network which is limited to 255 plus
gateway. This can be overcome though by having multiple mesh networks
running on different radio channels. The biggest other choice was to use
Xbee's, these have better mesh networking but finding good documentation
about using the addressing rather than broadcasting on these networks was
difficult to come across. Generally Xbee's came across as not being as well
supported as the nRF24l01 radios which I think were a good choice.

Encryption was a complete mess. It wasn't initially included in the
communications specification and when it was it wasn't adequately researched
and so the limits of the Arduino were not taken into account. An example of
this was the choice to use Diffie-Hellman key exchange and not realising the
memory required to do the modulus arithmetic required by the algorithm. I
think it would have been best to pick the simplest solution from the beginning,

Page 36 of 47

Lake Level Monitoring Tim Stableford (tis4)

which is what was chosen in the end. Using a pre-shared key and an
encryption library which runs both on Arduino and Linux.

During the course of this project the Arduino CryptoShield[33] was
released which contains various security which support RSA and AES
encryption. With this it would have been possible to do a key exchange using
public/private key encryption. Along similar lines, if a chip with more RAM
had been used even if it only had 8Kb it would have been possible to do the
Diffie-Hellman key exchange as originally planned, it may have even been the
reason the AES library used by the gateway could not run on the sensor node.

I also would have liked to have had the gateway coordinate network
sleeping and a way to update other EEPROM values over the network. The
problem with the current implementation is if the sleep times of the network
were to be reconfigured it would have to be done individually to each node in
the network. This would have been rather difficult to implement in the
gateway which is why it was not done.

Another limitation of the system caused by limited RAM and a bug in
the RF24 libraries is that there is a limited maximum packet size and it is not
dynamically allocated. When attempting to read just a few bytes from the
incoming data buffer the RF24 libraries just return everything, this means that
reading the communications library header to see how big the message is does
not work. The packet size of 128 was chosen because that is the size
implemented by the gateway, the limited RAM factor of the ATMega328P
means this could only be doubled with what remaining RAM there is.

5.5. Customer Acceptance
Near the end of the project when implementation was done to a good

standard by all people doing CAT projects we had a meeting with them and
demonstrated what had been implemented. They seemed pleased with what
had been produced although somewhat disappointed that encryption wasn't
working, overall though they seemed happy with what has been done and it
seems to have met their expectations. CAT have asked the students who did
projects for them to to a demonstration similar to that meeting for the CAT
staff along with perhaps a demonstration to the public.

5.6. Conclusions
I'm happy with how the project has turned out, there are certain things

I would like to go back and improve. The two big things for me are the choice
of processor and the configuration GUI. In retrospect I think I should have
used a more powerful processor such as the ATMega1284P because on the
ATMega328P the code uses 31Kb of 32Kb code space and most of the RAM, this
doesn't leave much space for future improvements. Power consumption could
have been improved by building around a bare-bones chip, making this project
more suitable to renewable energy. The other big thing, like I said previously,
would be to redo the configuration program to include a user interface for
manipulating the EEPROM and adding an overlay of what each address is
assigned to do, along with conversions between data types and bytes. I've
enjoyed working on this project and think given some adjustments it has a lot
of potential for future expandability.

Page 37 of 47

Lake Level Monitoring Tim Stableford (tis4)

6. Appendices

6.1. Documents From CAT

6.1.1. E-Mails

Depth units (from Adam Tyler)
Hi Tim,

If you could stick to the specification please and send the data in kPa (10kPa
= 1.0197442889 meters of water column @ 4degc). Bit late now but, the system
could send water temp as well to correctly convert, but as water at the bottom
of a lake will be a fairly constant 4degc, it's probably not worth worrying
about.

On the basic attributes, I am half way through writing them, but they're not
going to be done in time for you. The draft is available at this
link https://docs.google.com/document/d/1uMhxR_-
R7Prg2ErURpzX6xldsHasf_OAEdlefPVkBkA/edit?usp=docslist_api. I don't feel I
can ask you to implement such an early draft specification, but if you do feel
like some extra work, the Basic Device Information section is mostly finished;
if you do implement it, please comment that it is in draft form and subject to
change. If you don't feel like implementing the Basic Device Information
section, as long as the ability to add in new attributes in the future is available,
and how to do it is documented, that will be fine.

Adam

Problem with maximum node ID being 32 (from Adam Tyler)
Indeed 32 is far to low, and I would like to effectively have no limit going
forward. We need to get to the bottom of why there is a limit of 32, but
assuming it is just an oversight, it is something that will be changed. For this
initial stage, hopefully if the limit remains in the short term, it shouldn't have a
significant effect.

We will keep you updated.

System overview (from Adam Tyler)
I am in the middle of drafting another section for the OEMan coms
specification as I realised there isn't much in there explaining how it will all
work. Hopefully it will be finished soon, but I thought I would send round a
quick summary a) so you have a better understanding to be working with, and
b) if you have any comments before I fully write it up.

So we have three main components, the Emoncms server, dumb nodes
(sensors and output devices that just talk), and smart nodes (sensors and
output devices that listen and talk back).

When a new node appears on the network it registers itself with the server,
and gets issued a node id (effectively the nodes to address as there may be
more than one node on a single ip address). It then must declare what type of
device it is to the server, so it cycles through all of its attributes. In the
specification there are a list of groups of attributes, and a node can have as
many groups as you want, as long as it declares all the mandatory attributes

Page 38 of 47

https://docs.google.com/document/d/1uMhxR_-R7Prg2ErURpzX6xldsHasf_OAEdlefPVkBkA/edit?usp=docslist_api
https://docs.google.com/document/d/1uMhxR_-R7Prg2ErURpzX6xldsHasf_OAEdlefPVkBkA/edit?usp=docslist_api

Lake Level Monitoring Tim Stableford (tis4)

for the groups that it wants to use; all nodes will have to use the basic group
(yet to be defined in the specification, but it will be basic things like name,
firmware version, node type).

for dumb nodes in normal operation, when you want to send data to the
server, you will send off the input request as shown in the specification, with
the group id, attribute id and attribute number in the first section of the json
packet, so that the server knows where the data is coming from, and the value
of that data in the second part of the packet in the format specified in the
specification. It is intended that all the Emoncms input format will be
supported, e.g. you will be able to send in not only a single value, but a batch of
values if for example the sensor takes regular readings, but only powers up the
radio once in a while.

for smart nodes, the idea is that the sensor will store the inputs as feeds within
the node. When the server requests data from a smart node, it requests a feed
from the node, by sending the group id, attribute id, attribute number and
node id in a json packet. The node then responds with either the latest value,
the value for a specific point in time, or a batch of values depending on what is
requested.

Smart nodes may need to request data from other nodes, e.g. a thermostat on
node A requesting an external temperature from node B. This is something
that needs a bit more thought, as in theory node A can directly contact node B,
without going through the server; except that only the server will hold the ip
addresses of all the nodes. So unless node A is pre programmed with node B's
ip, or a way of sending node A node B's ip automatically is developed (which it
will be eventually), for now node A will request a node B feed from the server,
the server will then request the feed from node B and then pass it onto node A.

Hopefully that all makes some sense to you.

6.1.2. Other Documents
Other documents supplied by CAT have been referenced. The big one is

the OEMan Communications Specification, around 100 or so pages. See [5].

6.2. EEPROM Map
A lot of configuration is done in the EEPROM, this is detailed here. Values are a
single byte unless specified otherwise in square brackets, which will be the
byte count.

6.2.1. EEPROM Reset (Address 0)
If address 0 is set to a value other than 0 then the EEPROM is reset with 0's.

6.2.2. RF24 Node ID (Address 1)
This is the node ID used by the RF24 library. If it is 0 a random number is
chosen between 220 and 245, the random number generator is seeded by the
RTC.

6.2.3. EMon Node ID (Address 2 [2])
The node ID used by EMonCMS is stored as an unsigned short in these two
bytes. The first address contains the high order byte and the second address
the low order byte.

Page 39 of 47

Lake Level Monitoring Tim Stableford (tis4)

6.2.4. EMon Calibration Gradient (Address 4[4])
The gradient for the linear calibration is stored as a float in this address as an
IEEE754 value.

6.2.5. EMon Calibration Y-Intercept (Address 8[4])
The y-intercept for the linear calibration is stored as a float in this address as
an IEEE754 value.

6.2.6. EMon Calibration Base (Address 12[2])
The base, 0 value for pressure is stored here as an unsigned short. The first
address contains the high order byte and the second address the low order
byte.

6.2.7. Encrypt Enable (Address 14)
If this is set to anything other than 0 it is assumed an encryption key is set. This
enabled encryption.

6.2.8. Encryption Key (Address 15 [24])
The Triple DES encryption key.

6.2.9. Alarm Storage (Address 40 [Variable, minimum 2])
The first byte is the wake length in minutes as an unsigned byte. The second
byte is the number of alarms following as an unsigned byte. If the number of
alarms is 0 then the device is always awake.

Alarms are specified after this as two unsigned byte values. The first byte is the
hour between 0 and 23, the second byte is minutes between 0 and 59. If the
hour byte is 255 then it means every hour.

An example with one alarm that wakes for 5 minutes at 10 past every hour.

Wake Time Number of Alarms Hour Minute

0x05 0x01 0xFF 0x0A

6.2.10.Attribute Registered (Address 400[Variable, currently 2])
A byte is set to a non-zero value for each successfully registered attribute so it
is not repeatedly registered. The current implementation registers time since
starting and the pressure attribute, which is why it is two bytes.

6.3. Circuit Diagrams
Following are circuit diagrams for the project. The two boards connect
together over the header that is common on both diagrams. Higher resolution
images can be found in the digital copy of this report.

Page 40 of 47

Lake Level Monitoring Tim Stableford (tis4)

6.3.1. Radio Board

This is the circuit diagram for the radio board as implemented. The wire on A7
is not necessary and is used to generate entropy if random libraries are used,
which this project currently does not.

6.3.2. Sensor Board

The sensor board circuit diagram does not completely portray the actual
implementation. The implementation has ground leakage where the input
ground is connected to the output from the transistor which switches the
project. A diode was added to minimize this loss, this circuit though I believe
should fix the problem.

Page 41 of 47

Lake Level Monitoring Tim Stableford (tis4)

6.4. Parts List

6.4.1. Radio Board
Component Count Unit Price Total

Arduino Pro Mini (5V, 16Mhz) 1 £1.88 £1.88

nRF24l01+PA+LNA 1 £3.25 £3.25

DS1302 RTC 1 £1.92 £1.92

Micro Switch (SPST) 1

33uF Electrolytic Capacitor 1

2000mAh Li-Po Battery 3.7V 1 £2.65 £2.65

Strip-board 1 £0.50 £0.50

MCP1700-3302E/TO Microchip V Reg, LDO +3.3V
250Ma, To-92-3

1 £1.62 £1.62

12KOhm Resistor 1

3.3KOhm Resistor 1

Miscellaneous Cables

Miscellaneous Pin Headers

£11.82

6.4.2. Sensor Board

Component Count Unit Price Total

Arduino Pro Mini (5V, 16Mhz) 1 £1.88 £1.88

XL6009 DC-DC Voltage Step Up Boost Converter
(Configured for 15V)

1 £2.57 £2.57

LM7805 1 £1.98 £1.98

33uF Electrolytic Capacitor 1

Diode 1

BC337 Transistor 1 £0.20 £0.20

MAX485 1 £1.50 £1.50

100Ohm Resistor 1

11KOhm Resistor 1

1.2KOhm Resistor 1

Strip-board 1 £0.50 £0.50

Miscellaneous Cables

Miscellaneous Pin Headers

£8.63

6.4.3. Raspberry Pi Interface

Page 42 of 47

http://www.ebay.co.uk/itm/360986490067?_trksid=p2057872.m2749.l2649&ssPageName=STRK%3AMEBIDX%3AIT
http://www.ebay.co.uk/itm/360986490067?_trksid=p2057872.m2749.l2649&ssPageName=STRK%3AMEBIDX%3AIT

Lake Level Monitoring Tim Stableford (tis4)

Component Count Unit Price Total

nRF24l01+PA+LNA 1 £3.25 £3.25

33uF Electrolytic Capacitor 1

MCP1700-3302E/TO Microchip V Reg, LDO +3.3V
250Ma, To-92-3

1 £1.62 £1.62

Miscellaneous Cables

Miscellaneous Pin Headers

£4.87

6.4.4. Total Cost
The total cost of parts is £25.32.

Page 43 of 47

http://www.ebay.co.uk/itm/360986490067?_trksid=p2057872.m2749.l2649&ssPageName=STRK%3AMEBIDX%3AIT
http://www.ebay.co.uk/itm/360986490067?_trksid=p2057872.m2749.l2649&ssPageName=STRK%3AMEBIDX%3AIT

Lake Level Monitoring Tim Stableford (tis4)

7. Annotated Bibliography
This final section should list all relevant resources that you have consulted in
researching your project. Each reference should also include a brief
annotation.

[1] Manny Soltero, Jing Zhang, and Chris Cockril. RS-422 and RS-485
Standards Overview and System Configurations.
http://www.ti.com/lit/an/slla070d/slla070d.pdf, 2010. Accessed April
2015.

The specification for RS485.

[2] The Modbus Organization. MODBUS APPLICATION PROTOCOL
SPECIFICATION V1.1b.
http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf,
2006. Accessed April 2015.

The specification for the Modbus communication protocol.

[3] Centre for Alternative Technology Wales. About Centre for Alternative
Technology. http://content.cat.org.uk/index.php/about-cat-what-do-we-
do, 2012. Accessed April 2015.

Information about the Centre for Alternative Technology Wales.

[4] Tim Stableford and Jonty Newman. Low-Power Radio Communications
Specification for EMonCMS.
https://docs.google.com/document/d/1w8eNexTgmPpNE55wStmc8pmFvy
_8MDga7StbSGITetw/edit, 2015. Accessed April 2015.

Radio communications specification implemented and created for this
project.

[5] Centre for Alternative Technology Wales. OEMan Communications
Specification Version 1.1. https://docs.google.com/document/d/1uMhxR_-
R7Prg2ErURpzX6xldsHasf_OAEdlefPVkBkA/edit#heading=h.b11peulovkz
y, 2015. Accessed April 2015.

Document describing the specification for the OEMan communications.
These are based upon the EMonCMS specification.

[6] Various. Arduino. http://www.arduino.cc/en/Main/Products, 2015.
Accessed April 2015.

Arduino product page.

[7] Various. Feature Driven Development.
http://www.agilemodeling.com/essays/fdd.htm, 2014. Accessed April
2015.

A description of the process of Feature Driven Development.

Page 44 of 47

http://www.agilemodeling.com/essays/fdd.htm
http://www.arduino.cc/en/Main/Products
https://docs.google.com/document/d/1uMhxR_-R7Prg2ErURpzX6xldsHasf_OAEdlefPVkBkA/edit#heading=h.b11peulovkzy
https://docs.google.com/document/d/1uMhxR_-R7Prg2ErURpzX6xldsHasf_OAEdlefPVkBkA/edit#heading=h.b11peulovkzy
https://docs.google.com/document/d/1uMhxR_-R7Prg2ErURpzX6xldsHasf_OAEdlefPVkBkA/edit#heading=h.b11peulovkzy
https://docs.google.com/document/d/1w8eNexTgmPpNE55wStmc8pmFvy_8MDga7StbSGITetw/edit
https://docs.google.com/document/d/1w8eNexTgmPpNE55wStmc8pmFvy_8MDga7StbSGITetw/edit
http://content.cat.org.uk/index.php/about-cat-what-do-we-do
http://content.cat.org.uk/index.php/about-cat-what-do-we-do
http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf
http://www.ti.com/lit/an/slla070d/slla070d.pdf

Lake Level Monitoring Tim Stableford (tis4)

[8] Open Energy Monitor. RFM12B.
http://openenergymonitor.org/emon/buildingblocks/rfm12b-wireless,
2015. Accessed May 2015.

A brief description of the RFM12B radio module as used by the Open
Energy Monitor group.

[9] Various. 2.4G Wireless nRF24L01p with PA and LNA.
http://www.elecfreaks.com/wiki/index.php?
title=2.4G_Wireless_nRF24L01p_with_PA_and_LNA, 2015. Accessed
May 2015.

Description to the nRF24l01 module with power amplifier and low
noise amplifier.

[10] TMRh20. Arduino: Using the full potential of NRF24L01 radio
modules. http://tmrh20.blogspot.co.uk/2014/03/high-speed-data-
transfers-and-wireless.html, 2015. Accessed May 2015.

A description, download and other documentation for enhanced
RF24, RF24Network and RF24Mesh libraries.

[11] N. Modadugu and E. Rescorla, “Datagram Transport Layer Security,”
Internet Requests for Comment, RFC Editor, Fremont, CA, USA, Tech.
Rep. 4347, Apr. 2006. Available: http://www.rfc-
editor.org/rfc/rfc4347.txt. Accessed May 2015.

The relevant RFC for DTLS.

[12] N. Kushalnagar, G. Montenegro, D. E. Culler, and J. W. Hui,
“Transmission of IPv6 Packets over IEEE 802.15.4 Networks,”
Internet Requests for Comment, RFC Editor, Fremont, CA, USA, Tech.
Rep. 4944, Sept. 2007. Available: http://www.rfc-
editor.org/rfc/rfc4944.txt. Accessed May 2015.

The relevant RFC for 6LoWPAN.

[13] Nebulon. FDD Process.
http://www.nebulon.com/articles/fdd/download/fddprocessesA4.pdf.
Accessed May 2015.

A document which describes the process of feature driven
development.

[14] Sadhna Goyal. Agile Techniques for Project Management and
Software Engineering.
http://csis.pace.edu/~marchese/CS616/Agile/FDD/fdd.pdf, 2007. Accessed
May 2015.

Document on FDD which details what each of the primary roles in FDD
are amongst other FDD details.

[15] STS. Rangeable RS485/4-20 mA Depth/Level Transmitter PTM/N/RS485.
http://www.pmc1.com/Customer-
Content/www/Products/Files/PTM_N_RS485_A.pdf. Accessed May 2015.

Page 45 of 47

http://www.pmc1.com/Customer-Content/www/Products/Files/PTM_N_RS485_A.pdf
http://www.pmc1.com/Customer-Content/www/Products/Files/PTM_N_RS485_A.pdf
http://csis.pace.edu/~marchese/CS616/Agile/FDD/fdd.pdf
http://www.nebulon.com/articles/fdd/download/fddprocessesA4.pdf
http://www.rfc-editor.org/rfc/rfc4944.txt
http://www.rfc-editor.org/rfc/rfc4944.txt
http://www.rfc-editor.org/rfc/rfc4347.txt
http://www.rfc-editor.org/rfc/rfc4347.txt
http://tmrh20.blogspot.co.uk/2014/03/high-speed-data-transfers-and-wireless.html
http://tmrh20.blogspot.co.uk/2014/03/high-speed-data-transfers-and-wireless.html
http://www.elecfreaks.com/wiki/index.php?title=2.4G_Wireless_nRF24L01p_with_PA_and_LNA
http://www.elecfreaks.com/wiki/index.php?title=2.4G_Wireless_nRF24L01p_with_PA_and_LNA
http://openenergymonitor.org/emon/buildingblocks/rfm12b-wireless

Lake Level Monitoring Tim Stableford (tis4)

Product sheet for the PTM/N/RS485 range of sensors.

[16] Various. Arduino Source Code. https://github.com/arduino/Arduino.
Accessed May 2015.

Source code for the Arduino core. This includes all default Arduino
libraries used in this project such as Wire.

[17] Various. SimpleModbusMaster library.
https://github.com/angeloc/simplemodbusng/blob/master/SimpleModbus
Master/SimpleModbusMaster.cpp#L430. Accessed May 2015.

The SimpleModbusMaster library which may have been used as an
alternative. The highlighted line is where there should be a delay.

[18] Timur Maksimov, Jack Christensen. Arduino DS1302RTC library.
http://playground.arduino.cc/Main/DS1302RTC, 2014. Accessed May
2015.

RTC library for communicating with DS1302.

[19] Paul Stoffregen. Arduino Time Library.
https://github.com/PaulStoffregen/Time, 2015. Accessed May 2015.

Arduino Time Library source code.

[20] Georgios Spanos. ArduinoDES library.
http://spaniakos.github.io/ArduinoDES/. Accessed May 2015.

DES and Triple DES library for Arduino and Raspberry Pi.

[21] Various. JSSC Library Source. https://github.com/scream3r/java-simple-
serial-connector, 2014. Accessed May 2015.

Java-simple-serial-connector source code.

[22] Various. Apache Commons Math Library.
http://commons.apache.org/proper/commons-math/. Accessed May 2015.

Apache Commons Math library homepage, containing links to source.

[23] Various. BitTorrent Sync Homepage. https://www.getsync.com/. Accessed
May 2015.

Homepage for the BitTorrent Sync tool used for backing up this project.

[24] Various. GIT SCM Homepage. http://git-scm.com/. Accessed May 2015.

Homepage for the GIT source control management software used for
version management in this project.

[25] Various. Eclipse IDE Homepage. https://eclipse.org/. Accessed May 2015.

Page 46 of 47

https://eclipse.org/
http://git-scm.com/
https://www.getsync.com/
http://commons.apache.org/proper/commons-math/
https://github.com/scream3r/java-simple-serial-connector
https://github.com/scream3r/java-simple-serial-connector
http://spaniakos.github.io/ArduinoDES/
https://github.com/PaulStoffregen/Time
http://playground.arduino.cc/Main/DS1302RTC
https://github.com/angeloc/simplemodbusng/blob/master/SimpleModbusMaster/SimpleModbusMaster.cpp#L430
https://github.com/angeloc/simplemodbusng/blob/master/SimpleModbusMaster/SimpleModbusMaster.cpp#L430
https://github.com/arduino/Arduino

Lake Level Monitoring Tim Stableford (tis4)

Homepage for the Eclipse IDE used for Java development.

[26] Various. UECIDE Homepage. http://uecide.org/. Accessed May 2015.

Homepage for the IDE used for Arduino development.

[27] 4-20ma. Modbus Master Library. https://github.com/4-
20ma/ModbusMaster/. Accessed May 2015.

Source for Arduino Modbus master library.

[28] Various. SimpleModbusMaster library source.
https://github.com/angeloc/simplemodbusng. Accessed May 2015.

SimpleModbusMaster library Github page.

[29] Various. MODBUS over Serial Line Specification and Implementation
Guide.
http://www.modbus.org/docs/Modbus_over_serial_line_V1_02.pdf.
Accessed May 2015.

Specification for using Modbus over a serial line.

[30] Atmel. ATMega328P datasheet. http://www.atmel.com/images/Atmel-
8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-
328-328P_datasheet_Complete.pdf. Accessed May 2015.

Datasheet for the ATMega328P.

[31] Davy Landman. AESLib Github page.
https://github.com/DavyLandman/AESLib/. Accessed May 2015.

Source code for Arduino AESLib.

[32] Dallas Semiconductor. DS1302 Trickle Charging Time Keeping Chip.
http://web.media.mit.edu/~msung/SAK2/DS1302Z.pdf. Accessed May
2015.

The data sheet for the DS1302 RTC, specifying the 3 wire interface.

[33] Sparkfun. CryptoShield. https://www.sparkfun.com/products/13183.
Accessed May 2015.

Product page for the Sparkfun CryproShield.

Page 47 of 47

https://www.sparkfun.com/products/13183
http://web.media.mit.edu/~msung/SAK2/DS1302Z.pdf
https://github.com/DavyLandman/AESLib/
http://www.atmel.com/images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-328-328P_datasheet_Complete.pdf
http://www.atmel.com/images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-328-328P_datasheet_Complete.pdf
http://www.atmel.com/images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-328-328P_datasheet_Complete.pdf
http://www.modbus.org/docs/Modbus_over_serial_line_V1_02.pdf
https://github.com/angeloc/simplemodbusng
https://github.com/4-20ma/ModbusMaster/
https://github.com/4-20ma/ModbusMaster/
http://uecide.org/

